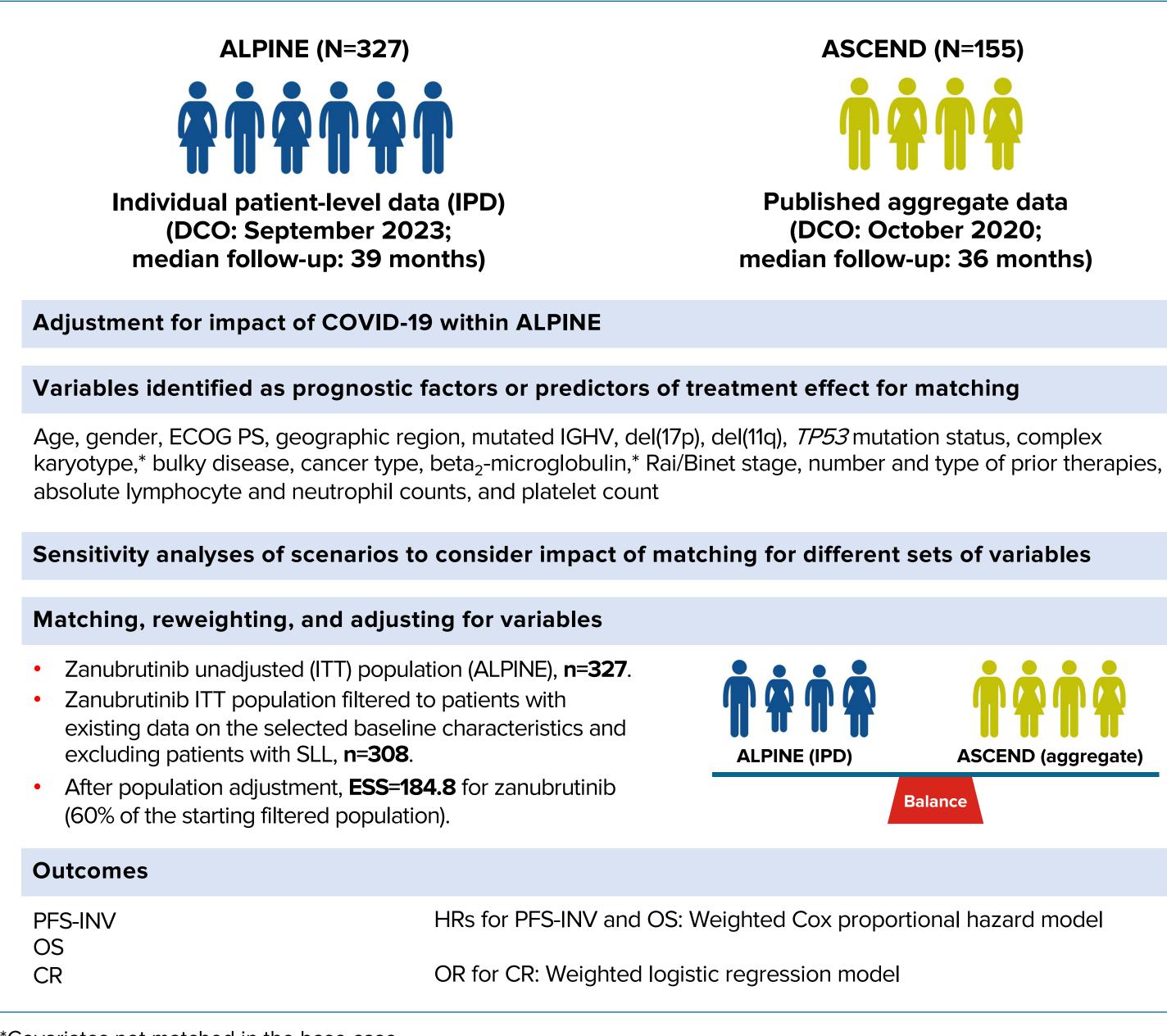
Efficacy of Zanubrutinib Versus Acalabrutinib in the Treatment of Relapsed or Refractory Chronic Lymphocytic Leukemia (R/R CLL): A Matching-Adjusted Indirect Comparison (MAIC)

Mazyar Shadman¹, Jennifer R Brown², Rhys Williams³, Leyla Mohseninejad⁴, Keri Yang³, Pal Rakonczai⁵, Nicole Lamanna⁶, Sheng Xu⁷, Aileen Cleary Cohen³, Susan M. O'Brien⁸, Alessandra Tedeschi⁹, and Constantine S. Tam¹⁰

¹Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, USA; ⁴BeiGene USA, Inc, San Mateo, CA, USA; ⁴BeiGene Netherlands B.V., Schiphol, Netherlands; ⁵Evidera, Budapest, Hungary; ⁶Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA; ⁹ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹⁰Alfred Hospital and Monash University, Melbourne, VIC, Australia


BACKGROUND AND OBJECTIVE

- Zanubrutinib, a next-generation covalent Bruton tyrosine kinase inhibitor (BTKi), Table 1. Covariates matched in the base case and sensitivity analyses is the only BTKi that demonstrated progression-free survival (PFS) superiority vs ibrutinib (first-generation BTKi) in relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) in the ALPINE trial.¹
- Acalabrutinib, a second-generation BTKi, showed improved PFS vs rituximabidelalisib/bendamustine in R/R CLL in the ASCEND trial,^{2,3} but PFS noninferiority vs ibrutinib in patients with R/R CLL with chromosome 17p or 11q deletions in the ELEVATE-RR trial.⁴
- As no head-to-head clinical trial of zanubrutinib and acalabrutinib in R/R CLL exists, an indirect treatment comparison was performed to evaluate the relative efficacy of these two treatments.
- The objective of this study was to compare the efficacy of zanubrutinib in ALPINE and acalabrutinib in ASCEND using matching-adjusted indirect comparison (MAIC) methodology.

METHODOLOGY

- Individual patient-level data (IPD) from ALPINE was matched against the aggregate data from ASCEND.¹⁻³
- An unanchored MAIC was used due to the lack of a common comparator arm between the ALPINE and ASCEND trials.
- Given the timing of the study in relation to the COVID-19 pandemic for ASCEND vs ALPINE, adjustments on ALPINE were made for the impact of COVID-19.
- Population adjustment in the base case analysis considered all variables identified as prognostic factors or predictors of treatment effect (Fig. 1; Table 1).
- Pseudo IPD for PFS and overall survival (OS) in the acalabrutinib arm of ASCEND were reconstructed from the digitized Kaplan-Meier curves reported in the ASCEND publication using the algorithm by Guyot et al.⁵
- A weighted Cox proportional hazard model was used to compare investigatorassessed PFS (PFS-INV) and OS and a weighted logistic regression model to compare complete response (CR).

Figure 1. Details of the overall methodology

Covariates not matched in the base case CR, complete response; DCO, data cut-off; del(11q), chromosome 11q deletion; del(17p), chromosome 17p deletion; ECOG PS, Eastern Cooperative Oncology Group performance status; ESS, effective sample size; HR, hazard ratio; IGHV, immunoalobulin heavy chain variable: IPD, individual patient-level data; ITT, intent to treat; OR, odds ratio; OS, overall survival; PFS-INV, investigator-assessed progression-free survival; SLL, small lymphocytic lymphoma.

METHODOLOGY

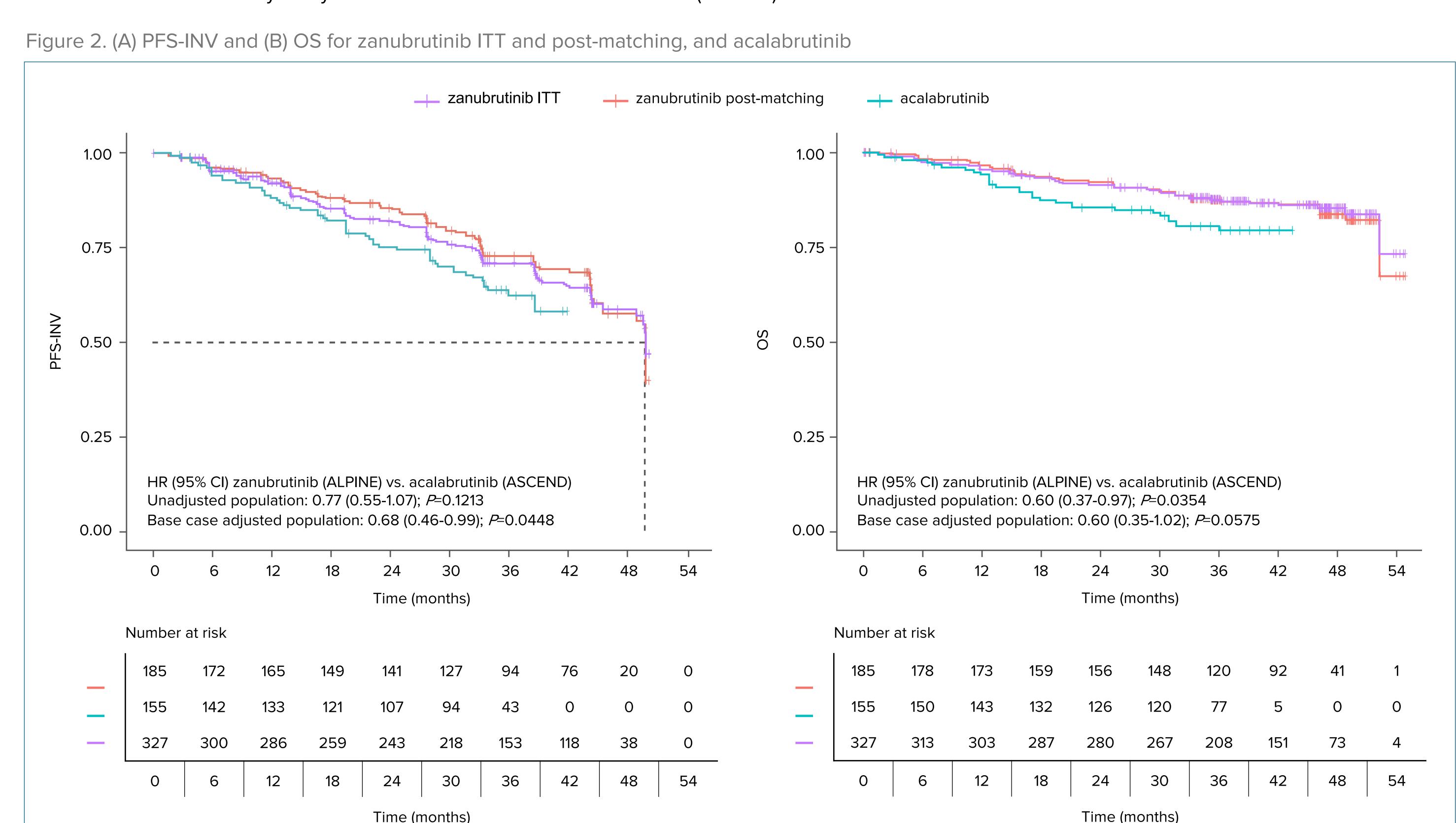
Table I. Covariates matched in t	Main analysis			Sensitivity analyses					
Covariates	Unadjusted population	Base case adjusted population	S1	S2	S3	S4	S5	S6	
Age ≥75, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Male, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
ECOG PS score=0 (vs. ≥1), %		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
Geographic region								· ۲	
United States and Canada, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Australia and New Zealand, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Asia, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Europe, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Genomic status									
Mutated IGHV, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Del(17p), %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Del(11q), %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
<i>TP53</i> mutation, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Complex karyotype ≥3, %*								\checkmark	
Bulky disease, LDi in cm, ≥5, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Cancer type, CLL, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Beta ₂ -microglobulin >3.5 mg/L, %*								\checkmark	
Rai stage 0-II or Binet A/B, %		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Number of prior therapies									
2, %		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
3, %		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
≥4, %		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Prior therapy								۲. 	
Anti-CD20 antibody, %		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
Alkylators other than bendamustine, %		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
Bendamustine, %		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
Purine analog, %		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
Absolute lymphocyte count, 10 ⁹ cells/L, median		\checkmark				\checkmark	\checkmark	\checkmark	
Absolute neutrophil count, 10 ⁹ cells/L, median		\checkmark				\checkmark	\checkmark	\checkmark	
Platelet count, 10 ⁹ cells/L, median		\checkmark				\checkmark	\checkmark	\checkmark	

Covariates not matched in the base case performance status; IGHV, immunoglobulin heavy chain variable; LDi, longest diameter.

RESULTS

Covariates	Acalabrutinib ASCEND (N=155)	Zanubrutinib ALPINE (N=327)	Zanubrutinib ALPINE post-matching (ESS=184.8)
Age ≥75, %	21.9	22.6	21.9
Male, %	69.7	65.1	69.7
ECOG PS score=0 (vs. ≥1), %	37.4	39.9	37.4
Geographic region			
United States and Canada, %	5.2	15.9	5.2
Australia and New Zealand, %	5.8	8.6	5.8
Asia, %	4.5	15.0	4.5
Europe, %	84.5	60.6	84.5
Genomic status			
Mutated IGHV, %	16.2	25.0	16.2
Del(17p), %	17.4	13.8	17.4
Del(11q), %	25.2	27.8	25.2
<i>TP53</i> mutation, %	25.2	15.3	25.2
Complex karyotype ≥3, %*	32.4	26.8	28.6
Bulky disease, LDi in cm, ≥5, %	49.0	44.3	49.0
Cancer type, CLL, %	100	96	100
Beta ₂ -microglobulin >3.5 mg/L, %*	77.4	62.6	62.8
Rai stage 0-II or Binet A/B, %	58.1	58.0	58.1
Number of prior therapies			
2, %	25.8	26.3	25.8
3, %	11.0	7.6	11.0
≥4, %	10.3	7.3	10.3
Prior therapy			
Anti-CD20 antibody, %	83.9	83.8	83.9
Alkylators other than bendamustine, %	85.8	83.8	85.8
Bendamustine, %	30.3	25.7	30.3
Purine analog, %	70.3	54.4	70.3
Absolute lymphocyte count, 10 ⁹ cells/L, median	48.9	36.0	49
Absolute neutrophil count, 10 ⁹ cells/L, median	3.8	4.0	4
Platelet count, 10 ⁹ cells/L, median	119.5	126.0	119.0

Table 2. Baseline characteristics of the zanubrutinib and acalabrutinib popula


Del (11a). chromosome 11a deletion: del (17p). chromosome 17p deletion; ECOG PS, Eastern Cooperative Oncology Group

Bold values imply a statistically significant difference between zanubrutinib and acalabrutinib pre-matching. *Covariates not matched in the base case.

del(11q), chromosome 11q deletion; del(17p), chromosome 17p deletion; ECOG PS, Eastern Cooperative Oncology Group performance status; ESS, effective sample size; IGHV, Immunoglobulin heavy chain variable; LDi, longest diameter.

Efficacy outcomes

- PFS-INV was significantly improved for zanubrutinib post-matching (Fig 2A); OS was potentially improved for zanubrutinib post-matching (Fig 2B).
- CR favored zanubrutinib in the unadjusted and base case adjusted populations (**Table 3**).
- Results for the sensitivity analyses were consistent with the base case (**Table 3**).

CI, confidence interval; HR, hazard ratio; ITT, intent-to-treat; OS, overall survival; PFS-INV, investigator-assessed progression-free survival.

Table 3. Relative treatment effects for base case and sensitivity analyses

	Main analysis		Sensitivity analyses					
	Unadjusted population	Base case adjusted population	S1	S2	S3	S4	S5	S6
Sample size for ALPINE zanubrutinib	N=327	ESS=184.8	ESS=188.9	ESS=210.3	ESS=208.1	ESS=188.2	ESS=187.4	ESS=78.2
HR PFS-INV zanubrutinib vs. acalabrutinib (95% CI, <i>P</i> value)	0.77 (0.55-1.07, <i>P</i> =0.1213)	0.68 (0.46-0.99, <i>P</i> =0.0448)	0.68 (0.47-1.00, <i>P</i> =0.0483)	0.72 (0.5-1.04, <i>P</i> =0.0842)	0.73 (0.51-1.05, <i>P</i> =0.0921)	0.67 (0.46-0.98, <i>P</i> =0.0410)	0.67 (0.46-0.98, <i>P</i> =0.0386)	0.71 (0.43- 1.17, <i>P</i> =0.1822)
HR OS zanubrutinib vs. acalabrutinib (95% Cl, <i>P</i> value)	0.6 (0.37-0.97, <i>P</i> =0.0354)	0.6 (0.35-1.02, <i>P</i> =0.0575)	0.59 (0.35-1.00, <i>P</i> =0.0481)	0.63 (0.38-1.04, <i>P</i> =0.0720)	0.66 (0.40-1.09, <i>P</i> =0.1030)	0.61 (0.36-1.03, <i>P</i> =0.0627)	0.61 (0.36-1.03, <i>P</i> =0.0667)	0.68 (0.33-1.39, <i>P</i> =0.2872)
OR CR zanubrutinib vs. acalabrutinib (95% Cl, <i>P</i> value)	2.88 (1.18-7.02, <i>P</i> =0.0198)	2.90 (1.13-7.43, <i>P</i> =0.0270)	2.88 (1.13-7.38, <i>P</i> =0.0273)	2.69 (1.06-6.85, <i>P</i> =0.0377)	2.78 (1.09-7.07, <i>P</i> =0.0316)	2.85 (1.11-7.31, <i>P</i> =0.0294)	2.80 (1.09-7.19, <i>P</i> =0.0326)	3.34 (1.15-9.71, <i>P</i> =0.0264

Bold values indicate P<0.0

CI, confidence interval; CR, complete response; ESS, effective sample size; HR, hazard ratio; OR, odds ratio; OS, overall survival; PFS-INV, investigator-assessed progression-free survival.

24	30	36	42	48	54		
Time (r	nonths)						
156	148	120	92	41	1		
126	120	77	5	0	0		
280	267	208	151	73	4		
24	30	36	42	48	54		
Time (months)							

CONCLUSIONS

- This comprehensive MAIC demonstrated a significant PFS and CR advantage, and potentially improved OS for zanubrutinib compared with acalabrutinib.
- Results were robust across multiple sensitivity analyses.
- In a previous publication, Kittai et al. presented a MAIC to compare the efficacy and safety of zanubrutinib (ALPINE, aggregate) vs. acalabrutinib (ASCEND, IPD) in R/R CLL. Findings showed similar efficacy for zanubrutinib and acalabrutinib (PFS-INV) and different adverse event profiles.⁷
- The efficacy results differ from those presented here because the analysis by Kittai et al. had several important limitations, including different follow-ups between ALPINE and ASCEND, lack of any adjustment for COVID-19, and incomplete matching variables (e.g., no granularity in geographic regions and number and types of prior therapies
- While MAICs provide a scientific basis for evaluating hypotheses with regards to treatment efficacy across trials, the gold standard for evaluating evidence of relative efficacy remains randomized controlled trials.

LIMITATIONS

- There is a potential for bias resulting from the strong assumption that cross-trial differences can be entirely explained by variables selected for matching.
- Independent review committee-assessed PFS was not analyzed in the current MAIC due to unavailability of data in ASCEND and the latest ALPINE data cutoff.
- The study did not compare safety for zanubrutinib vs acalabrutinib, given different treatment exposure times across the two trials.
- Safety of a drug is best evaluated via meta-analyses that use all available evidence across all indications.
- A recent meta-analysis of 61 trials involving 6,959 patients who received ibrutinib, ibrutinib \pm anti-CD20 antibody, acalabrutinib, and zanubrutinib extensively analyzed the AE profiles of zanubrutinib and acalabrutinib across several indications and reported differences between the two treatments.⁶

DISCLOSURES

MS reports receiving funding from BeiGene paid to Fred Hutchinson Cancer Research Center and the University of Washington (Seattle, WA, USA), with regards to the submitted work; research funding from Pharmacyclics (Inst), Acerta Pharma (Inst), Merck (Inst), TG Therapeutics (Inst), BeiGene (Inst), Celgene (Inst), Genentech (Inst), MustangBio (Inst), AbbVie (Inst), Sunesis Pharmaceuticals (Inst), Bristol Myers Squibb/Celgene, Genmab (Inst), and Vincerx Pharma (Inst); and consulting or advisory roles with AbbVie, Genentech, AstraZeneca, Sound Biologics, Cellectar, Pharmacyclics, BeiGene, Bristol Myers Squibb/Celgene, MorphoSys, Innate Pharma, Kite, a Gilead Company, Adaptive Biotechnologies, Epizyme, Fate Therapeutics, Lilly, Regeneron, Adaptimmune, MustangBio, TG Therapeutics, and MEI Pharma, outside the submitted work.

REFERENCES

- 1. Brown JR, et al. *N Engl J Med.* 2023; 388: 319-332.
- 2. Ghia P, et al. *J Clin Oncol.* 2020; 38: 2849-2861.
- 3. Ghia P, et al. *Hemasphere*. 2022; 6(12):e801.
- 4. Byrd JC, et al. *J Clin Oncol.* 2021; 39: 3441–3452.
- 5. Guyot P, et al. BMC Med Res Methodol. 2012; 12: 9.
- 6. Hwang S, et al. *Hemasphere*. 2023;7(S3):1134.
- 7. Kittai AS, et al. *Am J Hematol.* 2023;98(12):E387-E390.